Part Number Hot Search : 
2SC3621 RU60E16L A7802 NJL51 0F201 52RA4T2 25005 BCM5400
Product Description
Full Text Search
 

To Download IRF9Z24NS Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRF9Z24NS/l l advanced process technology l surface mount (IRF9Z24NS) l low-profile through-hole (irf9z24nl) l 175c operating temperature l p-channel l fast switching l fully avalanche rated s d g parameter typ. max. units r q jc junction-to-case CCC 3.3 r q ja junction-to-ambient ( pcb mounted,steady-state)** CCC 40 thermal resistance c/w parameter max. units i d @ t c = 25c continuous drain current, v gs @ -10v ? -12 i d @ t c = 100c continuous drain current, v gs @ -10v ? -8.5 a i dm pulsed drain current ?? -48 p d @t a = 25c power dissipation 3.8 w p d @t c = 25c power dissipation 45 w linear derating factor 0.30 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy ?? 96 mj i ar avalanche current ? -7.2 a e ar repetitive avalanche energy ? 4.5 mj dv/dt peak diode recovery dv/dt ?? -5.0 v/ns t j operating junction and -55 to + 175 t stg storage temperature range c soldering temperature, for 10 seconds 300 (1.6mm from case ) absolute maximum ratings the d 2 pak is a surface mount power package capable of accommodating die sizes up to hex-4. it provides the highest power capability and the lowest possible on- resistance in any existing surface mount package. the d 2 pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0w in a typical surface mount application. the through-hole version (irf9z24nl) is available for low-profile applications. description v dss = -55v r ds(on) = 0.175 w i d = -12a to-263 to-262 www.kersemi.com 1 2014-8-29
IRF9Z24NS/l ? starting t j = 25c, l = 3.7mh r g = 25 w , i as = -7.2a. (see figure 12) ? repetitive rating; pulse width limited by max. junction temperature. ( see fig. 11 ) notes: ? i sd -7.2a, di/dt -280a/s, v dd v (br)dss , t j 175c ? pulse width 300s; duty cycle 2%. ? uses irf9z24n data and test conditions parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) CCC CCC showing the i sm pulsed source current integral reverse (body diode) ? CCC CCC p-n junction diode. v sd diode forward voltage CCC CCC -1.6 v t j = 25c, i s = -7.2a, v gs = 0v ? t rr reverse recovery time CCC 47 71 ns t j = 25c, i f = -7.2a q rr reverse recoverycharge CCC 84 130 nc di/dt = -100a/s ?? t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) source-drain ratings and characteristics a s d g parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage -55 CCC CCC v v gs = 0v, i d = -250a d v (br)dss / d t j breakdown voltage temp. coefficient CCC -0.05 CCC v/c reference to 25c, i d = -1ma ? r ds(on) static drain-to-source on-resistance CCC CCC 0.175 w v gs = -10v, i d = -7.2a ? v gs(th) gate threshold voltage -2.0 CCC -4.0 v v ds = v gs , i d = -250a g fs forward transconductance 2.5 CCC CCC s v ds = -25v, i d = -7.2a CCC CCC -25 a v ds = -55v, v gs = 0v CCC CCC -250 v ds = -44v, v gs = 0v, t j = 150c gate-to-source forward leakage CCC CCC 100 v gs = 20v gate-to-source reverse leakage CCC CCC -100 na v gs = -20v q g total gate charge CCC CCC 19 i d = -7.2a q gs gate-to-source charge CCC CCC 5.1 nc v ds = -44v q gd gate-to-drain ("miller") charge CCC CCC 10 v gs = -10v, see fig. 6 and 13 ?? t d(on) turn-on delay time CCC 13 CCC v dd = -28v t r rise time CCC 55 CCC i d = -7.2a t d(off) turn-off delay time CCC 23 CCC r g = 24 w t f fall time CCC 37 CCC r d = 3.7 w , see fig. 10 ?? between lead, and center of die contact c iss input capacitance CCC 350 CCC v gs = 0v c oss output capacitance CCC 170 CCC pf v ds = -25v c rss reverse transfer capacitance CCC 92 CCC ? = 1.0mhz, see fig. 5 ? electrical characteristics @ t j = 25c (unless otherwise specified) i gss ns i dss drain-to-source leakage current nh 7.5 l s internal source inductance -12 -48 www.kersemi.com 2 2014-8-29
fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 1 10 100 0.1 1 10 100 d ds 20s pulse w idth t = 25c a -i , d rain-to-source c urrent (a) -v , drain-to-source voltage (v) vgs to p - 15v - 10v - 8.0v - 7.0v - 6.0v - 5.5v - 5.0v bot tom - 4.5v -4.5v c 1 10 100 0.1 1 10 100 d ds a -i , drain-to-source current (a) -v , drain-to-source volta g e ( v ) vgs top - 15v - 10v - 8.0v - 7.0v - 6.0v - 5.5v - 5.0v bottom - 4.5v -4.5v 20 s pulse w idth t = 175c c 1 10 100 45678910 t = 25c j gs d a -i , drain-to-source current (a) -v , gate-to-source volta g e (v) v = -25v 20s pulse w idth ds t = 175c j 0.0 0.5 1.0 1.5 2.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 j t , junction temperature (c) r , drain-to-source on resistance ds(on) (n orm alized) a v = -10v gs i = -12a d t j = 25c t j = 175c IRF9Z24NS/l www.kersemi.com 3 2014-8-29
fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0 4 8 12 16 20 0 5 10 15 20 25 g gs a -v , gate-to-source voltage (v) q , total g ate char g e ( nc ) for test circuit see figure 13 i = -7.2a v = -44v v = -28v d ds ds 0.1 1 10 100 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 t = 25c t = 150c j j v = 0v gs sd sd a -i , reverse drain current (a) -v , source-to-drain voltage (v) 1 10 100 1 10 100 ope ra tio n in this area limited by r ds(on) 10ms a -i , drain current (a) -v , drain-to-source volta g e ( v ) ds d 10s 100s 1ms t = 25c t = 175c sin g le pulse c j 0 100 200 300 400 500 600 700 1 10 100 c, capacitance (pf) ds v , drain-to-source volta g e ( v ) a v = 0v , f = 1mhz c = c + c , c shorted c = c c = c + c gs iss g s g d ds rss g d oss ds g d c iss c oss c rss IRF9Z24NS/l www.kersemi.com 4 2014-8-29
fig 10a. switching time test circuit fig 10b. switching time waveforms fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature v ds -10v pulse width 1 s duty factor 0.1 % r d v gs v dd r g d.u.t. + - v ds 90% 10% v gs t d(on) t r t d(off) t f 0 3 6 9 12 25 50 75 100 125 150 175 c t , case temperature (c) a -i , drain current (amps) d 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 t , rectangular pulse duration (sec) 1 thjc d = 0.50 0.01 0.02 0.05 0.10 0.20 s in g le p u l s e (thermal response) a therm al response (z ) p t 2 1 t dm n otes: 1. d uty factor d = t / t 2. peak t = p x z + t 12 j dm thjc c IRF9Z24NS/l www.kersemi.com 5 2014-8-29
fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit fig 12c. maximum avalanche energy vs. drain current q g q gs q gd v g charge -10v d.u.t. v ds i d i g -3ma v gs .3 m f 50k w .2 m f 12v current regulator same type as d.u.t. current sampling resistors + - t p v ( br ) dss i as r g i as 0.01 w t p d.u.t l v ds v dd driver a 15v -20v 0 50 100 150 200 250 25 50 75 100 125 150 175 j e , single pulse avalanche energy (mj) as a startin g t , junction temperature ( c ) i top -2.9a -5.1a bo tto m -7.2a d IRF9Z24NS/l www.kersemi.com 6 2014-8-29
peak diode recovery dv/dt test circuit p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - ? ? ? r g v dd dv/dt controlled by r g i sd controlled by duty factor "d" d.u.t. - device under test d.u.t * circuit layout considerations low stray inductance ground plane low leakage inductance current transformer ? * reverse polarity of d.u.t for p-channel v gs [ ] [ ] *** v gs = 5.0v for logic level and 3v drive devices [ ] *** fig 14. for p-channel hexfets IRF9Z24NS/l www.kersemi.com 7 2014-8-29
d 2 pak package outline d 2 pak part marking information 10.16 (.400) re f. 6.47 (.255) 6.18 (.243) 2.61 (.103) 2.32 (.091) 8.89 (.350) r e f. - b - 1.32 (.052) 1.22 (.048) 2.79 (.110) 2.29 (.090) 1.39 (.055) 1.14 (.045) 5.28 (.208) 4.78 (.188) 4.69 (.185) 4.20 (.165) 10.54 (.415) 10.29 (.405) - a - 2 1 3 15.49 (.610) 14.73 (.580) 3x 0.93 (.037) 0.69 (.027) 5.08 (.200) 3x 1.40 (.055) 1.14 (.045) 1.78 (.070) 1.27 (.050) 1.40 (.055) m ax. notes: 1 dimensions after solder dip. 2 dimensioning & tolerancing per ansi y14.5m, 1982. 3 controlling dimension : inch. 4 heatsink & lead dimensions do not include burrs. 0.55 (.022) 0.46 (.018) 0.25 (.010) m b a m minimum recommended footprint 11.43 (.450) 8.89 (.350) 17.78 (.700) 3.81 (.150) 2.08 (.082) 2x lead assignments 1 - ga te 2 - d r ain 3 - s ou rc e 2.54 (.100) 2x part number logo date code (yyw w ) yy = year ww = week assembly lot code f530s 9b 1m 9246 a IRF9Z24NS/l www.kersemi.com 8 2014-8-29
package outline to-262 outline to-262 part marking information IRF9Z24NS/l www.kersemi.com 9 2014-8-29
tape & reel information d 2 pak 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.42 9) 10.70 (.42 1) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.06 3) 1.50 (.05 9) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min . 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. IRF9Z24NS/l www.kersemi.com 10 2014-8-29


▲Up To Search▲   

 
Price & Availability of IRF9Z24NS

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X